Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142390

RESUMO

Fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) is a highly conserved enzyme that is involved in glycolysis and gluconeogenesis. In this study, we cloned the fructose-1,6-bisphosphate aldolase gene from Euphausia superba (EsFBA). The full-length cDNA sequence of EsFBA is 1098 bp long and encodes a 365-amino-acid protein. The fructose-1,6-bisphosphate aldolase gene was expressed in Escherichia coli (E. coli). A highly purified protein was obtained using HisTrap HP affinity chromatography and size-exclusion chromatography. The predicted three-dimensional structure of EsFBA showed a 65.66% homology with human aldolase, whereas it had the highest homology (84.38%) with the FBA of Penaeus vannamei. Recombinant EsFBA had the highest activity at 45 °C and pH 7.0 in phosphate buffer. By examining the activity of metal ions and EDTA, we found that the effect of metal ions and EDTA on EsFBA's enzyme activity was not significant, while the presence of borohydride severely reduced the enzymatic activity; thus, EsFBA was confirmed to be a class I aldolase. Furthermore, targeted mutations at positions 34, 147, 188, and 230 confirmed that they are key amino acid residues for EsFBA.


Assuntos
Euphausiacea , Frutose-Bifosfato Aldolase , Aldeído Liases/genética , Aminoácidos/metabolismo , Animais , Boroidretos/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Ácido Edético/metabolismo , Escherichia coli/metabolismo , Frutose/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Humanos , Cinética , Fosfatos/metabolismo
2.
Front Bioeng Biotechnol ; 9: 827552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155417

RESUMO

A series of stable mesoporous silica sieves (SBA-15) with different pore sizes (9.8, 7.2, and 5.5 nm) were synthesized using a hydrothermal method. The resulting mesoporous material was then utilized for protein immobilization using myoglobin (Mb) as the target protein. The effects of pore size and adsorption methods on the immobilization efficiency of Mb in a mesoporous material were studied. The SBA-15 with a pore size of 7.2 nm showed the best loading capacity, reaching 413.8 mg/g. The SBA-15 with a pore size of 9.8 nm showed the highest retained catalytic ability (92.36%). The immobilized enzyme was more stable than the free enzyme. After seven consecutive assay cycles, Mb adsorbed by SBA-15 (Mb/SBA-15) and Mb adsorbed by SBA-15 and crosslinked with glutaraldehyde (Mb/G/SBA-15) retained 36.41% and 62.37% of their initial activity, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...